\(\int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\) [149]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 35 \[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \]

[Out]

2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2827, 2720, 2719} \[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[In]

Int[(a + a*Cos[c + d*x])/Sqrt[Cos[c + d*x]],x]

[Out]

(2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/d

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+a \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.33 (sec) , antiderivative size = 155, normalized size of antiderivative = 4.43 \[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {a \sqrt {\cos (c+d x)} (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (-2 \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)+\tan (d x+\arctan (\tan (c)))-\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \tan (d x+\arctan (\tan (c)))}{\sqrt {\sin ^2(d x+\arctan (\tan (c)))}}\right )}{2 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])/Sqrt[Cos[c + d*x]],x]

[Out]

(a*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*(-2*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^
2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + Tan[d*
x + ArcTan[Tan[c]]] - (HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Tan[d*x + ArcTan[Ta
n[c]]])/Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(2*d)

Maple [A] (verified)

Time = 2.60 (sec) , antiderivative size = 150, normalized size of antiderivative = 4.29

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(150\)
parts \(\frac {2 a \,\operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}+\frac {2 a \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(153\)
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) a \sqrt {2}\, {\mathrm e}^{-i \left (d x +c \right )}}{d \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{-i \left (d x +c \right )}}}-\frac {i \left (\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )}{\sqrt {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}-\frac {2 \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{\sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{i \left (d x +c \right )}}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}\right ) a \sqrt {2}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{i \left (d x +c \right )}}\, {\mathrm e}^{-i \left (d x +c \right )}}{d \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{-i \left (d x +c \right )}}}\) \(407\)

[In]

int((a+cos(d*x+c)*a)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*
c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 107, normalized size of antiderivative = 3.06 \[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {-i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d} \]

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*a*weierstrassPInverse(-4,
0, cos(d*x + c) - I*sin(d*x + c)) + I*sqrt(2)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 + I*sin(d*x + c))) - I*sqrt(2)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x +
 c))))/d

Sympy [F]

\[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=a \left (\int \frac {1}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \sqrt {\cos {\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

a*(Integral(1/sqrt(cos(c + d*x)), x) + Integral(sqrt(cos(c + d*x)), x))

Maxima [F]

\[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {a \cos \left (d x + c\right ) + a}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)/sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {a \cos \left (d x + c\right ) + a}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)/sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 14.94 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.77 \[ \int \frac {a+a \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,a\,\left (\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{d} \]

[In]

int((a + a*cos(c + d*x))/cos(c + d*x)^(1/2),x)

[Out]

(2*a*(ellipticE(c/2 + (d*x)/2, 2) + ellipticF(c/2 + (d*x)/2, 2)))/d